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About myself:
a tokamak modeler, with a background in diagnostics and operation



The goal of this lecture 2

• What questions you should ask yourself
• How modeling can guide experiments
• …
• There are no equations in this lecture

July 2022Francesca M. Poli - ITER International Summer School



The mindset of integrated operation scenario modeling 3

• You are modeling a plasma that must be controllable and operate safely, 
from start-up to termination.

• You need to think at the interface between physics and engineering
• The modeling needs to support experiments

• by providing a combination of models with different physics hierarchy
• by providing a realistic representation of the systems, including dynamics
• by mimicking the plasma response to actuators, as seen from diagnostics

Þ Focus on the big picture, not on details
Þ Look at qualitative trends first, details later
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• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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Plasma physics encompasses wide range of scales 6

10-10 10-8 10-6 10-4 10-2 100 102 104

10-6 10-4 10-2 100 102

Wave propagation

wEC-1 wIC-1wLH-1 tA

Plasma turbulence

Macroscopic stability
Transport           current diffusion

tE tR tD

Full wave solvers
<1M CPU Hours

Gyrokinetic codes
<10M CPU hours

MHD codes

time (s)

space (m)

ITER

Equilibrium and
transport solvers
<102 CPU hours

but we do not need to include everything to design a scenario …
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The models/data should be accessible within a 
framework 7

Extreme scale
First principle (Vlasov eq.)
Gyrokinetic codes
Full wave solvers

Advanced reduced
Fluid codes
Reduced full wave solvers

Reduced
Ray tracing codes
Neural networks

Validation
Experiments

uncertainty quantification
models and experiments 

verification

[FES Integrated Modeling Workshop Report, 2015]
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So that you can choose according to the target 8

Extreme scale
First principle (Vlasov eq.)
Gyrokinetic codes
Full wave solvers

Advanced reduced
Fluid codes
Reduced full wave solvers

Reduced
Ray tracing codes
Neural networks

Computational time decreases:
millions CPU hours to minutes/seconds

Physics fidelity decreases
Verification/validation needed at each step

Time-slice
applications

Time-dependent
applications
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This is a highly nonlinear system 9

Transformer: source
of poloidal flux Auxiliary
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a-heating
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But also a highly incomplete nonlinear system 10
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But also a highly incomplete nonlinear system 11

Transformer: source
of poloidal flux Auxiliary

H&CD

External 
momentum

a-heating

kinetic profiles

Heat, particle &
Momentum 

fluxes 

Transport coefficients
Turbulent & neoclassical

Magnetic flux
diffusion Conductivity

profiles

Self-generated
current 

Actuators (external)

CD

H
Fuelling 

& pumping

Wall 
sources

and sinks

Plasma (internal)

SLOW

FAST

RULE #1 OF THE SCENARIO MODELER:

Do not believe anything you model
and

always validate/verify, step after step
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The truth is … you do not need high fidelity physics to 
model a plasma that satisfies coil constrains and VS 12

Transformer: source
of poloidal flux Auxiliary
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External 
momentum

a-
heating

kinetic profiles
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H
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& pumping

Wall 
sources

and sinks
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Analytic models

July 2022Francesca M. Poli - ITER International Summer School



13

• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down

July 2022Francesca M. Poli - ITER International Summer School



14

• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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Develop strategy in support of EP experiments 15

Reference discharge with feedback on bN

The problem:
Þ q profile relaxes to monotonic in the 

stationary phase
Þ Develops MHD

The target:
Þ Need to sustain flat/weak RS q profile
Þ and qmin at larger radius
Þ No MHD
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Develop strategy in support of EP experiments 16

Other discharges display the same behavior

The problem:
Þ q profile relaxes to monotonic in the 

stationary phase
Þ Develops MHD
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How would you achieve the target? 17

• Solution 1
• Solution 2
• Solution 3
• Solution 4
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• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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How should you approach a problem like this? 19

Start with a well 
diagnosed case

Assess your 
models Make a small change to the reference

that can be predicted with your models

Run a feedforward
experiment to validate 

your simulation 

Validate models against the new experiment.
Assess what is missing, what could have been done better
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Our approach: use EC to change resistivity and current 
diffusion during the ramp-up phase 20
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proposed

• Prescribe density
• Choose NBI waveform such that

• Total power comparable to original
• Different on-axis/off-axis NB mix
• Ensure diagnostics NBI are setup
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Our approach: use EC to change resistivity and current 
diffusion during the ramp-up phase 21
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• Prescribe density
• Choose NBI waveform such that

• Total power comparable to original
• Different on-axis/off-axis NB mix
• Ensure diagnostics NBI are setup

Þ Need to ensure that fueling is as close as 
possible to the original discharge
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Our approach: use EC to change resistivity and current 
diffusion during the ramp-up phase 22
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• Choose NBI waveform such that

• Total power comparable to original
• Different on-axis/off-axis NB mix
• Ensure diagnostics NBI are setup

Þ Need to ensure that fueling is as close as 
possible to the original discharge

• EC heating and current drive critical
• Predict electron temperature
• Evolve poloidal current diffusion
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Our approach: use EC to change resistivity and current 
diffusion during the ramp-up phase 23
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Reference
proposed

• Prescribe density
• Choose NBI waveform such that

• Total power comparable to original
• Different on-axis/off-axis NB mix
• Ensure diagnostics NBI are setup

Þ Need to ensure that fueling is as close as 
possible to the original discharge

• EC heating and current drive critical
• Predict electron temperature
• Evolve poloidal current diffusion

• H-mode => need to model pedestal
• Models not valid in ramp-up
• Use reference discharges to rescale
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TRANSP simulations indicate these settings are adequate 
to achieve target 24
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The real experiment reproduced the expected behaviour 25

• Feed-forward NBI and EC predicted first with TRANSP (no feedback)
• Improved access to high beta with little MHD
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The experiment was better than the simulation 26
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• Early EC delays current penetration
• Off-axis NBI does the rest
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MHD activity with n=1 and n=2 was reduced 27

MHD activity with n=3 not so much
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The importance of making small steps 28

• We prescribed the density
• We choose a NBI waveform very 

close to the reference discharge
• Because we believe the NB 

model, but we don’t believe the 
gas fueling model

Þ Gas feedback puff is very close 
to the reference.
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Always validate your model a posteriori 29
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Þ Good agreement even w/o density feedback
NBI fueling dominates

Þ Good agreement with incomplete impurity transport 
only one impurity

Þ Not good agreement with measured neutron rate
no model for anomalous fast ion transport

Some validation done a posteriori … try to predict also plasma density
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Hardware failures happen … 30

• The discharge 175286 was used as a reference for an EP session
• Adapted the same early-EC approach to design new references at different B 

that sustains qmin

• The day before the session two (high power) gyrotrons failed

Þ EC power staggering was critical to achieve/sustain high qmin

What would have you done if you were at my place?
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Hardware failures happen … 31

• The discharge 175286 was used as a reference for an EP session
• Adapted the same early-EC approach to design new references at different B 

that sustains qmin

• The day before the session two (high power) gyrotrons failed

Þ EC was critical to sustain q during the flattop phase

What would have you done if you were at my place?
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32

• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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Extrapolation to ITER usually based on asymptotic solution 34

Modified Rutherford Eq.

D`CD(w)=f(JCD,wEC)

hNTM is a function of 
wsat/wmarg and wdep/wmarg

Þ the wider the EC deposition the better
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Asymptotic solutions don’t account for dynamic response 35

• Effects of misalignment (systematic or transient)
• Threshold effects on detection of island (magnetics or ECE)
• Broadening of EC deposition (turbulence, pellet scattering, beam grouping)
• Plasma profile responses to EC heating and current drive
• Local modifications of current and safety factor profile (tearing effects)
• Hardware response (switching mechanisms, steering speed, etc)

Simulated NTM control should take all these effects into account
First step towards development of real (PCS) control algorithms



Implemented feedback loop in TRANSP to play with 36
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Effect of EC alignment dynamically taken into account 37
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Not enough time between detection of (2,1) and locking 38

TARGET:
prevent the (2,1) island 
from growing larger than 6 cm 
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onset Locks here

detected

• Run time-dependent simulations, from ramp-up to ramp-down
• Track resonant surfaces => allow for misalignment up to 3 cm
• Observables: size of island (from ECE) and dB/B (from magnetics) => allow for S/N
• Include broadening of ECCD (e.g. scattering due to fluctuations)
• Include hardware response (e.g. 3s delay when switching between transmission lines)

Calibration simulation:
evolution of (2,1)-NTM in ITER ELMy H-mode discharge, 
no ECCD



Pre-emptive control and really good tracking needed 39

Alignment within 0.5wCD needed

broad is good
Þ but not too broad

too narrow 
leads to locking

Keep EC power fixed

Keep |rCD-rS|=2.5 cm



The fine boundary between control scenarios and physics 
scenarios 40

• These are NOT simulations of control
• These are still physics scenarios, but they aim at modeling constrains on 

control.
• The target is to use a workflow over and over - as physics models improve -

to identify critical phases and to inform control engineers on requirements 
for actuator sharing.
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• Introduction on scenario modeling
• Exercise: developing a feed-forward discharge at high qmin

• Experimental validation
• When things go wrong in the control room

• Example #1: modeling NTM control on ITER
• Example #2: modeling the ITER plasma ramp-down
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Courtesy of Gianmaria De Tommasi



There are only 4 actuators and many open questions 43

Current ramp-down 

Reduce cross-section

Shut-down heating

Shut-down fueling

optimal value in ITER baseline <0.21MA/s

There are alphas on ITER, not enough experience
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There are only 4 actuators and many open questions 44

Current ramp-down 

Reduce cross-section

Shut-down heating

Shut-down fueling
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Open area of research,
both for modeling and control

We have achieved a mature level of 
understanding both in modeling and 
control
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When plasma shrinks, combined core heating and MHD 
control might be challenging 45
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ÞBut EC is needed for NTM control (power sharing)
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Let’s model the ITER plasma ramp-down. Where to start? 46

Current ramp-down 

Reduce cross-section

Shut-down heating

Shut-down fueling

GWL

Radiative collapse

Locked mode W accumulation

High lilow q

no VS

early HLlate HL

high nDensity peaking

W sputteringELMs

edge T high

low n

FAST SLOW

SLOW
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edge T low

Courtesy of Peter De Vries
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For a given plasma current ramp rate, there is minimum 
safe rate for the plasma cross-section reduction 47
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We use the nominal current ramp-down rate: 0.20MA/s

and explore safe range of cross-section reduction
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What could possibly go wrong? 48

• Perturb density evolution and 
instruct the ‘control’ in the 
physics model scenario on 
allowed operations and in 
what sequence
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How can experiments help answering some of the 
questions that ITER needs to be addressed? 49

• Density decay => 

• Large beta drop =>

• Radial inward excursion =>

• Vertical stability control =>
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OPEN DISCUSSION 50
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